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ABSTRACT

A mathematical theory is presented to describe membrane sieving based on the
relative sizes of pores and solutes. A polydisperse liquid mixture with a continuous
distribution of solute radii undergoes hindered transport through distributed mem-
brane pores. The hydrodynamic theory for rigid spheres in cylindrical pores pro-
vides expressions for the hindered diffusive and convective fluxes. Continuous
and discrete (including fractal) distributions of pore sizes are considered. For
a steady-state ultrafiltration process with a well-mixed upstream concentration
distribution, the theory predicts how much the downstream concentration distribu-
tion shifts toward smaller solutes as larger solutes are hindered or rejected by the
membrane. Sieving coefficients, which are related to permeation rates that depend
on relative pore and solute sizes, are presented for gamma distributions of solute

radii and for continuous and discrete pore-radii distributions.

Key Words. Theory; Ultrafiltration; Fractal pore-size distribu-

tion; Hindered diffusion; Polydisperse mixture

INTRODUCTION

Membrane separations of liquid mixtures can occur by an ultrafiltration
seiving process in which smaller solutes pass through the pores and larger
solutes are retarded or totally rejected (1-3). Despite the practical impor-
tance of such partially-retentive membranes (4), relatively little work has
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been reported for solutes of many different sizes in distributed pores. In
their discussion of dextran transport through ultrafiltration membranes,
Mochizuki and Zydney (2) reviewed the experimental investigations of
such polydisperse solutions. In the absence of surface forces that cause
adsorption, the separation is due to steric effects in the membrane pores.
Solutes of all sizes are hindered in their convective or diffusive passage
through the membrane by interaction with the pore walls. These hydrody-
namic interactions can be mathematically characterized for certain cases,
including rigid spheres in cylindrical pores and in rectangular slits (5, 6).

The current investigation proposes and evaluates a pore-transport
model for ultrafiltration separations of a continuous liquid mixture whose
distribution of solute sizes is a continuous function. Continuous-mixture
theories have provided a useful route for understanding thermodynamics
and chemical kinetics in multicomponent mixtures (7-11), but have not
been applied extensively to problems of mass transfer and separation. The
present objective is to show how a model can be developed for transport of
continuous mixtures in distributed pores and to examine the consequences
of the model. The distribution of the solute radii is taken to be a gamma
distribution, a versatile function for describing continuous frequency dis-
tributions (9, 10).

The membrane consists of cylindrical pores, perpendicular to the mem-
brane surface, whose sizes are represented by a pore-size distribution. The
mixture has so many chemical species that it is described by a continuous
function of solute radius, which itself is a continuous independent vari-
able. The convection and diffusion of the solutes, assumed to be neutral
rigid spheres, through the cylindrical pores are hindered by steric interac-
tions with the pore walls, thus reducing the flux. Only solutes smaller
than the pore diameter are allowed to be transported through the mem-
brane. The effect of this pore cutoff diameter is enhanced by hindered
transport to afford a basis for separation. The theory of hindered transport
in liquid-filled pores has been developed for several geometries, including
single spheres in a cylindrical pore (5). Using the approximation that each
such sphere is positioned on the centerline, Bungay and Brenner (6) de-
rived an expression for diffusive and convective flux for all solute diame-
ters smaller than the pore diameter. The discussion here is restricted to
membrane separations in the absence of external mass transfer limitations.
Opong and Zydney (3) and Mochizuki and Zydney (2) explained how to
account for such concentration polarization effects. Dharmappa et al. (12)
discussed how solute polydispersivity affects membrane fouling.

Both continuous and discrete pore-size distributions are treated in the
present mathematical model of membrane sieving. Rectangular distribu-
tions of pore radii illustrate how continuous functions enter into the model
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formulation and influence the results. A discrete pore-size distribution is
introduced by a fractal approach based on the concept of the Sierpinski
carpet (13) and constructed by an iterative, deterministic procedure. The
pore distribution allows for the number of pores and their size to be repre-
sented by a fractional power, i.e., the fractal dimension. The fractal re-
duces to the Sierpinski carpet membrane when appropriate values of three
parameters are chosen. Such fractals were proposed by Adler (14) but
not applied to diffusion of mixtures. Sernetz et al. (15) recognized the
importance of the diffusion of a mixture of different-sized molecules in
fractal porous media for chromatographic separations.

The current paper is arranged so that flux through a single pore is dis-
cussed in terms of the well-mixed upstream and downstream solute distri-
butions, ce(x) and ce(x). The summation of fluxes through all pores pro-
vides expressions for the total permeation rate of solutes through the
membrane. This allows the definition of a solute-dependent sieving coeffi-
cient, s(x), that can be utilized to calculate the downstream distribution
of solute sizes from the upstream distribution. The overall, or lumped,
membrane sieving coefficient, S, can be found by integrations over x.
Illustrative calculations are discussed for gamma distributions of solute
radii and for continuous (rectangular and gamma) and discrete (fractal)
pore-size distributions. With the given concepts and definitions, however,
the approach can be applied using any functional forms for the distribu-
tions.

HINDERED TRANSPORT

A porous membrane is fixed between two large-volume, well-stirred
bulk liquid mixtures. The liquids consist of a solvent containing continu-
ous polydisperse mixtures with the solute radius as the independent vari-
able. For such mixtures the concentration of solutes with radii in the range
(x, x + dx)1s ¢(x)dx. The total, or lumped, concentration is

C = J‘: c(x) dx N

A discrete number of solute species of size x; and concentration C; can
be represented in terms of Dirac delta functions by the summation over
the species:

c(x) = ZCiB(X - Xi) (2)

The steady-state solute flux, J(x, r;), of a single solute through a single
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pore of radius r; is given by (1, 3, 5)
J = K.vje — KgDy dcldz 3)

where c(x, r;, 7) is the radially-averaged solute concentration distribution
in the pore, v, is the radially-averaged solution velocity, Dy(x) is the bulk
solution Brownian-motion diffusivity, and K. and Ky are the hindrance
factors for convective and diffusive transport, respectively. For laminar
flow in a cylindrical pore of radius r;, the velocity is given in terms of the
bulk viscosity . and the pressure difference Ap across the membrane of
thickness L,

v = (r?/8p)Ap/L 4)

The hindrance factors, according to the Bungay and Brenner (6) theory,
are expressed in terms of the partition coefficient (16, 17):

O = (1 — x/r,)?, for x < r; (5)
o = 0, forx=r;

which accounts for exclusion of the spherical solute from an annular region
of the pore, or from the pore itself if the sphere is larger than the pore.
For diffusion and convection, respectively, the factors are functions of x
and r;,

Ky = 6m/K, and K. = (2 - ®)K, /2K, (6)

where
(Ki, K,) = (9/8) 231 — x/r) 2 [1 + 25 (a,, b1 — x/r)")

+ 23 Ayt 3, bn+3)(X/rj)n (7)

and the values for a,, and b,, are given in the Nomenclature Section. The
hindrance factors apply to dilute suspensions of spheres. as solute—solute
interactions are neglected.

The boundary conditions for the differential Eq. (3) for c(x, #;, 2) in
terms of the well-stirred bulk concentration distribution upstream, co(x),
and downstream., ¢¢(x), are

clx. r. 0) = Deply) (8)

2

and
clxor. 2 = L) = Perlx) 9

where the partition coefficient, &, accounts for exclusion of the spherical
solute from an annular region of the pore., and ensures that ¢(x, r;, z) is



12: 06 25 January 2011

Downl oaded At:

MEMBRANE SIEVING 491

zero if x = r; due to the complete exclusion of a sphere from the pore.
Thus the partition coefficient, defined in Eq. (5), enforces the cutoff re-
quirement for each pore and thus for the membrane as a whole.

The solution to the differential Eq. (3) for the single pore is (1, 3)

J(x, r;) = ®K.vjcoll — e Fepleg)(1 — e F) (10)
where the Peclet number for the solute of radius x and pore of radius r;
is defined as

Pj(X) = KCUJL/KdDb (l ])

Since the expression for J contains the multiplicative factor ®, the flux
vanishes for x = r;.

The solute flux for each pore is multiplied by its cross-sectional area

to determine the permeation rate (moles/time) through the pore, i.e., w

r;J(x, r;). For discrete pore sizes, the permeation rate of solutes of radius
x is the sum over all pore sizes,

N(x) = X nmr? J(x, r}) (12)

where n; is the number of pores of radius r;. The total volumetric flow
rate for dilute solutions is

Q = Xnmriy (13)

The downstream, well-stirred distribution of solute, c¢(x), is the solute
permeation rate, N(x), divided by the volumetric flow rate, Q:

cr(x) = N(x)/Q (14)

Since c¢(x) and ¢o(x) are independent of the pore size, we can combine
and rearrange algebraically Eqs. (10) and (12)—(14) to obtain

s(x) = cdx)leo(x) = ZlqF V2 qll + F; exp(—P))] (15)
where
4 = nmrjy; (16)
and
F; = ®K./(1 — exp(—P;)) (17)

In calculations of the ratio s(x), constant factors such as (1/8w)Ap/L in
the expression for v; and the normalization factor for the pore-size distri-
bution will cancel. Within each summation the partition coefficient, &,
serves to exclude solutes that are larger than a pore. This constitutes the
pore cutoff property for each size pore. The sieving coefficient, s(x), will
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in general have a maximum asymptotic value less than unity because
solutes iarger than r; are excluded from a pore of radius r;. If the largest
pores are much larger than the solutes, then s(x) will approach unity.
Defective membranes with a few large pores thus accomplish poor sepa-
ration.

The calculation of s(x) is closely related to the computation used by
Mochizuki and Zydney (1) to calculate the sieving coefficient for a mono-
disperse solution. With the explicit representation of s(x) in Eq. (15),
however, an iterative solution method is unnecessary. The sieving coeffi-
cient s(x) is independent of the form of the solute distributions, co(x) and
ce(x). If a value of s(x) is known, then the downstream distribution can
obviously be determined as

ce(xX) = s(x)co(x) (18)

which shows the benefit of knowing s(x). For a monodisperse pore-size
distribution (j = 1), the sieving coefficient reduces to

s(x) = OKceflled — 1 + PK.] (19)

consistent with the condition that J = v,¢¢ (a special case of Eq. 14),
which was discussed by Mochizuki and Zydney (1).

The overall sieving coefficient is defined as the ratio of the lumped
downstream to the lumped upstream concentration,

S = Ci/Cy = f dx s(.\')co(x)/J’ dx colx) (20)
0 0

Because of the presence of ® in s(x), § will manifest a membrane cutoff
since solutes larger than the largest pore will be excluded. The membrane
sieving coefficient § depends on the form of co(x), while s(x) does not.
For monodisperse solute distributions, s = S.

The function selected to represent the upstream continuous-mixture
distribution of solute sizes is a gamma distribution, or Pearson Type 111
function (18), expressed in terms of v = (x — xp)/B,

colx) = (Co/BTapve ! exp(—v), for x = x,
and
Co(.() =0, for x < Xo (21)

The zero moment with respect to x is Cy. the first moment is X,z = xo
+ af. and the variance is af®. The maximum of cy(x) is located at x =
X, + (@ — 1)B. Depending on the magnitude of a, the gamma distribution
can represent a spectrum of shapes between exponential (¢ = 1) and
gaussian (a > 1). If a = I, 8 = 1, and xg = 0, Eq. (21) is the Poisson
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distribution; if « = 1 and y < 1, Eq. (21) is approximated by a rectangular
distribution. To avoid the exclusion effect of solutes larger than the maxi-
mum pore size rm, which would yield asymptotic values of S and s(x >
ra) less than unity, in the computations to follow we truncate the gamma
distribution so that co(x > rm) = 0.

Figure 1 shows the gamma distribution fora = 2, Co = l,and B = 5
and 15. Increasing B when « is constant obviously broadens the distribu-
tion. To plot results as dimensionless variables, a length scale is needed.
According to the gamma distribution, Eq. (21), the continuous mixture
has a minimum solute radius, xo. This parameter is a convenient basis for
scaling x and r as x/x, and r/x,, although any length parameter would
suffice. The Peclet number can be written as

Pj(x) = (rilxo)* (K/Ka)To (22)
where
To = Apx3/8uDy (23)
0.08 T — T T T
0.06 |
0.04
c L
0.02F
0.00 *
0.0

xX/x0

FIG.1 Gamma distributions, c¢o(x), of upstream solute radii fors = 2, Co = 1,3 = 5and

15 (solid line). Downstream of the membrane with T, = 0.001 and a fractal pore distribution

(h=2,5 =15, Q = mw, a = 10x), the distribution c¢(x) (dotted line) demonstrates that

solutes larger than x,/xo = 6.67 are prevented from passing through pores and transport
of smaller solutes is hindered.
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is a dimensionless parameter that depends on the transmembrane pressure
and therefore can be controlled experimentally (2).

The distributions for ¢f(x), plotted for a discrete fractal pore-size distri-
bution at Ty = 0.001 in Fig. 1, demonstrate the separation of larger solutes
by pore cutoff and hindered transport. The downstream distribution, ¢¢(x),
is a gamma function only in special cases, e.g., when s(x) is constant
with x.

CONTINUOUS PORE-SIZE DISTRIBUTIONS

If the pore sizes are distributed continuously, then the summations in
the above equations are replaced by integrals over a pore-size distribution,
n(r). where the number of pores in the size range (r, r + dr) is n(r) dr.
Then instead of the summation in Eq. (12), the permeation rate of solutes
of radius x is the integral over n(r),

N(x) = f dr n(ryerRd(x. ) (24)
0
and likewise for Q in Eq. (13). The algebraic manipulations needed to

write the sieving coefficient are the same as for the discrete case; one
obtains

s(x) = cplx)colx) (25)

U dr q(r)F(r)V dr g1 + F(r)e—"]
Jo 0

where, for example.
qg(r) = n(r)ymrv (26)

and we have simply dropped the subscript j on the continuous variables
r.q. v, P, and F. The ratio that defines s(x) ensures that the normalization
constant of the pore-size distribution has no influence on s(x). The expres-
sion for the membrane sieving coefficient for continuous pore-size distri-
butions is the same as discrete distributions, Eq. (20).

Calculations for rectangular distributions of pores provide a straightfor-
ward route to realistic results. The rectangular distribution of pore sizes
1s given respectively by n(r) = np for xo < r = x,, and zero for other
values of r. The maximum value of r is taken to be the largest solute size
(rm = Xm) to avoid the effect of totally excluded solutes. The minimum
value of r is chosen to ignore pores smaller than the smallest solute size,
1.e., Fp = Xp.
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Calculations were also done with a gamma distribution of pore radii,
for which the continuous variable r replaced x in Eq. (21). Log-normal or
truncated Gaussian distributions, such as those used by Mochizuki and
Zydney (1), could also be employed for n(x).

FRACTAL PORE-SIZE DISTRIBUTIONS

Discrete pore-size distributions can be represented by a fractal power
relation. A model of a porous membrane with a deterministic fractal distri-
bution of pores is developed by a conceptual process of making parallel
holes in a slab. A similar construction (14) was used for flow in a porous
medium. Adler (14) suggested that such fractals could be applied to diffu-
sion and conduction (thermal or electrical) but did not introduce mixtures
of different sized molecules. The benefit of the fractal approach is that
simple mathematical formulas describe the fractal properties. Adler’s ex-
position (19) elaborates on the fractal representation of porous systems.

We first consider a membrane based on the fractal known as the Sierpin-
ski carpet (13), and then generalize the concept to consider holes of differ-
ent numbers, shapes, and sizes. Figure 2 shows the stepsj = 1,2, 3 in
the construction of the membrane from a unit square of area a. At Step
1 a square hole of edge a/3 is formed perpendicular to the membrane. In
each of the remaining 8 squares a hole of size (a/3%)* is formed. This
process is repeated indefinitely for every square. The edge length of a
square at Step j is r;, = a/3/ and its cross section has area a*/9/. The
number and volume, respectively, of pores formed at the jth step are

n = 871 and V, = L(8/9)a*/8 (27)

Although not a fractal, the cumulative pore-volume distribution up
to the jth step can be shown to be La?[1 — (8/9)/], which becomes La? if
J — <, meaning that all mass is eventually removed by making square
holes in the membrane. The discrete pore-volume distribution has the
fractal property (13) that it can be represented by a noninteger power, or
fractal dimension, D,

V; = APr;~? (28)
where
D =1In8In3 and A = a(L/8)V"P (29)
The pore cross-section-area distribution is
ViIL = A'Pri=P (30

where D = In 8/In 3 as before and A’ = a(1/8)'"?. The distribution can



12: 06 25 January 2011

Downl oaded At:

496 McCOY

Sp® p(m 2 sjmm &
-.- -.- l.l
g E|p g m|B B @8
L a e a
-.- ---
T 5 @ 5= a8
B|lej{s|® = m|{w mn =
a [} -.I -.I
s|s|w & m|uw & @
B .' °
o?o
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be made dimensionless:
Vi/iLa* = A*P(r;la)?~P (3D

where D is unchanged and A* = 8~ P

The fractal pore distribution can be generalized by considering pores
of cross-sectional area Qr?, where Q = 1 for squares,  for circles, or
other constants for other cross-section shapes. For membrane transport
through parallel pores the placement of the pores is immaterial if the cross
sections do not overlap and the upstream and downstream liquids are
well-stirred. Even though the pores are positioned randomly over the
membrane, the underlying fractal order of pore size applies. This melding
of randomness and organization is a common property of porous systems
(19). The relative size (e.g., radius) of the pores formed at two subsequent
steps is defined as the constant o:

o = (size of pore formed at Step j)/(size of pore formed at Stepj + 1)
(32)

The relative number of pores formed at subsequent steps is also a con-
stant:

h = (number of pores formed at Stepj + 1)/
(number of pores formed at Stepj) (33)

A similar generalization of the Sierpinski carpet was suggested by Pfeifer
and Obert (20). The unit square of area a? can be replicated side-by-side
to form the total membrane surface area. The size of pores removed at
Step jis r; = a/c’, and the volume of a pore is LO(a/o/)?. The volume
removed at the jth step is L(Qa?/h)/(h/o?)/, and the cumulative volume
removed is [LQa*/(a® — h)[1 — (h/g?)’]. All the membrane mass is re-
moved if the cumulative volume of pores at the jth step is La>. Such a
structure possesses fractal properties in a finite range of pore sizes. The
fractal dimension D and the premultiplier A* in the dimensionless equation

ViLa® = A*P(rjla)*—P (34)
can be shown to be
D=Inhlno and A* = (QUh)'P 35

The fractal dimension D depends on ¢ and 4 but not on the shape factor ;
the premultiplier A* depends on A and €2 but not on o. For the Sierpinski
membrane (fractal over the entire range of pore sizes), ) = 1, o = 3,
and & = 8, and the expressions reduce appropriately. If # = o2, then the
distribution is rectangular and discrete.
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Examples of fractal constructions are pictured in Fig. 2. The Sierpinski
carpet (A) shows the first three steps in making the square holes of size
ratio ¢ = 3 and number ratio i = 8. A membrane with circular cross-
section pores is shown {B) with ¢ = 3 and & = 6. The random positioning
of the pores in the membrane (C) with ¢ = 1.5 and 1 = 2 does not affect
the separation process.

Figure 3 shows the pore volume distribution versus r/a for various val-
ues of the parameters. The fractal membranes display pore-volume distri-
butions that may either increase or decrease with pore size. One may
utilize such power-law distributions as continuous distributions. For the
discrete distribution. values of r; are spaced evenly on the logarithmic
axis by the amount log(o). The line for the square-pore Sierpinski mem-
brane would be parallel to the cylindrical-pore case foro = 3and & = 8
{(not plotted). For a given value of o, lines for different /1 intersect at r =
l/o.

14 _\s~ T T v T Y T ‘
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12 e 7
\\ 4
~
10} h=ds_ -
T ~
~
£ 8r ‘s‘ h
2 b ~ ]
=] Sea S.
> 6r ‘-3 ~ -
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FIG. 3 Log-log plot of the pore-volume distribution: reduced volume. V/La*. versus hole

size. rj/a. for fractal membranes with cyvlindrical holes (€} = 7). ¢ = 1.5 (dashed line) and

o = 3 (solid line). and several values of /i. The dotted line is the Sierpinski membrane (2
=1l.o 3. h = 8).
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RESULTS AND DISCUSSION

It is instructive to view how the sieving coefficients s(x) and S depend
on the membrane and mixture parameters. In Fig. 4 are shown the solute
sieving coefficients, s(x), for several values of the transmembrane-pres-
sure parameter, Ty, calculated by Eq. (25). This membrane has a rectangu-
lar pore-size distribution with ro/xo = 1 and rm/xo = Xm/xe = 10. The
coefficient s(x) is independent of the distribution of solute sizes. Calcula-
tions (not shown) for a gamma distribution of pore radii demonstrated
behavior similar to Fig. 4. Solutes larger than x/xo = 10 are totally rejected
(s = 0), while small solutes are readily transported by diffusion through
the membrane if Ty is small.

Figure 5 shows the same data as Fig. 4 but plotted as s(x) versus 7.
If the Peclet number is large (e.g., Ty is large), the sieving coefficient has
its asymptotic value, s=(x) = ®K.. In the other limit, P < 1 (e.g., Ty is
small) and the solute transport is primarily diffusive, so that s = 1. The
two limits are displayed in Fig. 5, where s(x) is plotted for solutes of size
x/xg = 1, 2, 4, 6, 8, and 10. Smaller solutes have higher values of s(x)
since they are more readily transported through the pores. The sieving

s{x)

x/xo

FIG.4 The solute sieving coefficient, s(x), for a gamma distribution of solutes and a rectan-
gular distribution of pores (xm/xo = rm/xo = 10} for values of Ty from 10°® to 0.1.
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coefficient s(x) shows the same features as Fig. S of Mochizuki and Zyd-
ney (1), which also applies to distributed pores and solutes of distinct size.

The membrane sieving coefficient, S, calculated by Eq. (20), behaves
in a similar manner if we plot S versus 7T, for given pore and solute distribu-
tions (Fig. 6). The computational results are for a gamma distribution of
solutes and the rectangular distribution of pores used in Figs. 4 and 5. As
the solute distribution broadens, i.e., B increases, the large Ty asymptote
decreases due to hindered transport of the larger solutes in the broadened
distribution. For small T, the membrane sieving coefficient S approaches
unity since the maximum size of solutes equals the maximum size of pores
(rm/Xo = Xm/xo = 10). In this limit § would be less than unity if r,, < xp,

e.. the feed solution has solutes larger than the membrane cutoff. Thus,
as commonly defined, the membrane cutoff excludes solutes larger than
the largest pore.

The results for discrete pore distributions demonstrate behavior similar
to that of the continuous distributions. The solute sieving coefficient s(x)
is calculated by Eq. (15) and plotted for several values of Ty in Fig. 7 for
a fractal distribution of pores with s = 1.5, h = 2, a/xo = 10 (values of

1.0

1-—

\_

s(x) - \_-‘
04r
i 8
0.2} \
L x/x0=10
0.

0 \L
10" 10°1o'71o610'510"10'310210'
To

0.8

&

)

FIG. 5 The solute sieving coefficient. s(x). versus the parameter for transmembrane pres-
sure, Ty (same conditions as Fig. 4). As solute size increases. the diffusive asymptote de-
creases.
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FIG. 6 The membrane sieving coefficient, S, for a gamma distribution of solutes and a
rectangular distribution of pore sizes. As the solute distribution broadens (8 increases), the
diffusive asymptote decreases.

r; and V; are given in Table 1). This plot shows that as T, decreases,
diffusive transport allows solute concentrations to be more nearly equal
on the two sides of the membrane. and s(x) approaches unity for a larger
range of pore sizes. Figure 8 is the same as Fig. 7 but with & = 40. As
the relatively larger numbers of small pores restricts the permeation of
larger solutes, all curves for given values of T, are shifted leftward to
smaller values of x/xg.

The relationship between co(x) and ¢f(x) is shown in Fig. 1 for the fractal
distribution of pores (£ = 2) and for two values of B (width of solute
distribution). The sieving action of the membrane serves to reduce the
size of the filtrate solutes, i.e., ¢ =< ¢ for all x.

The effect on the membrane sieving coefficient of changing / is demon-
strated in Fig. 9, where § calculated by Eq. (20) is plotted versus Tj.
Computed values are displayed for # = 2, 5, 10, 40, and 100. As the pore-
size distribution shifts to smaller sizes (i.e., as /1 increases), S decreases.
The effect on the diffusive asymptote (large T, value of S) is especially
strong.
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s(x)

xX/xX0

FIG. 7 The solute sieving coefficient. s(x). for a gamma distribution of solutes {(xm/xy =
7) and a fractal distribution of pores (h = 2. ¢ = 1.5, Q = w1, a/xo = 10) for values of To
from 10°° 10 0.1.

The results clearly demonstrate that sieving coefficients are influenced
by both the pore-size and solute-size distributions. Not only cutoff proper-
ties, but also hindered transport enters into the analysis of ultrafiltration
separations. Using an average pore size for computations and data analy-
sis will not in general suffice to reveal the true behavior of a polydisperse-
mixture membrane separation process.

TABLE 1
Pore Size and Pore Volume for Six Steps in the Construction of a
Fractal Distribution of Pores (o = 1.5, Q = 7. a = 10x0)

ViLda®

J rila ho=2 =73 h =35
1 0.6667 1.158 1.356 1.977
2 0.4444 1.029 1.808 4.393
3 0.2963 0.915 2.411 9.762
4 0.1975 0.813 3.215 21.69
5 0.1317 0.723 4.286 48.21
6 0.0978 0.622 5.718 107.1
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FIG. 8 The solute sieving coefficient for conditions of Fig. 6 except that & = 40.
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F1G. 9 The membrane sieving coefficient, S, versus T, for a fractal membrane with ¢ =
1.5 and @ = «. The pore distribution shifts to smaller sizes as k increases.
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CONCLUDING REMARKS

Combining distributed pore and solute sizes in membrane separation
theory deepens the understanding of ultrafiltration processes. The interac-
tion of pores and solutes of different sizes gives rise to behavior not readily
interpreted by simpler models. The present work provides a framework
for developing more detailed theories that may be useful in designing
membrane processes and explaining experimental observations.

The present approach to membrane sieving differs from other models
by explicitly accounting for the distribution of solute sizes as well as of
pore sizes. The continuous-mixture concept of polydispersivity allows a
hydrodynamic analysis of hindered pore transport that leads to the compu-
tation of sieving coefficients. The sieving coefficient for individual solutes,
s(x), 1s useful for calculating the downstream (filtrate) solute-size distribu-
tion, ¢¢(x). given the upstream distribution. co(x). An integration computa-
tion allows the membrane sieving coefficient. S, to be calculated from
s(x) and ¢o(x). The theory reduces appropriately to simpler models; for
example, discrete solute mixtures in distributed pores and monodisperse
solutes in monodisperse pores. The distribution functions, gamma distri-
butions for solutes. and continuous rectangular and discrete fractal distri-
butions for pores are easily replaced in the model with other functions.
Characterization of the mixtures by gel permeation chromatography and
direct measurement of the membrane pore-size distribution by electron
microscopy can furnish the essential information needed to implement the
theory and test it against experimental observations.

The current model is limited by several approximations and assump-
tions. The membrane concentration polarization and fouling are neglected,
even though the polydisperse solute distribution affects this phenomena
(12). We consider the diffusion coefficient to be invariant with solute size,
a satisfactory approximation for narrow distributions. All-pores are per-
pendicular to the membrane and therefore of the same length. The calcula-
tions for hindered transport apply to very dilute solutions of rigid spherical
solutes in cylindrical pores with none but steric pore-wall interactions
{(e.g., no adsorption or electrostatic activity). In all except the most dilute
mixtures, however, solutes in pores will obstruct the permeation of other
solutes (21). While some of these approximations can be mitigated, relaxa-
tion of the assumptions inherent in the hydrodynamic theory of hindered
pore transport must await advances in this fundamental issue of fluid dy-
namics. Some of the basic ideas outlined in the current approach, how-
ever, will possibly be unchanged.
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NOMENCLATURE
a,, b, coefficients in expressions for hindered transport quantities K, and
K, (n = 1-7)
a; = —73/60
a; = 77,293/50,400
as = —22.5083
aqs = —5.6117
as = —0.3363
ag = —1.216
a; = 1647
b] = 7/60
b, = —2227/50,400
bs = 4.018
by = —3.9788
bs = —1.9215
bs = 4392
b; = 5.006
a length scale for a membrane of unit surface area a?
A A", A* coefficients in fractal expressions for membrane pore
volume V;
c(x) distribution of solutes of radii x
Co(x) upstream distribution of solutes of radii x
cr(x) downstream (filtrate) distribution of solutes of radii
X
C lumped concentration; integral of c¢(x) over all x
Co concentration of upstream solutes
Ce concentration of downstream solutes
D fractal dimension for membrane pore volume V;
Dy, bulk-solution diffusivity
J(x, r) flux of solute of radius x through pore of radius
K., K4, K, K, hindrance factors for solute transport in a pore
L thickness of membrane
n(r) distribution of pores of radius r
n; number of pores of radius r;
N(x) permeation rate of solute of radius x
P; Peclet number for transport in a pore of radius r;
Ap transmembrane pressure difference
0 total volumetric flow rate through membrane

¥

radius of a pore for continuous pore-size distributions
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discrete values of pore radius (j = 1,2,3,...)
minimum pore radius in a membrane

maximum pore radius in a membrane

membrane sieving coefficient in terms of lumped con-
centrations

membrane sieving coefticient for solute of radius x
dimensionless parameter, e.g., for transmembrane
pressure

cross-section average velocity in a pore of radius r;
volume of pores of size r;

solute radius

minimum solute radius in a distribution

maximum solute radius in a distribution

length coordinate along the pore

parameter in the gamma distribution

parameter in the gamma distribution

partition function

viscosity of solvent

parameter in fractal distribution of pore sizes
gamma function [= (a — 1) if a is an integer]
shape factor for pores
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