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Membrane Sieving of a Continuous Polydisperse 
Mixture through Distributed Pores 

BENJAMIN J.  McCOY 
DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE 
UNIVERSITY OF CALIFORNIA 
DAVIS, CALIFORNIA 95616 
TELEPHONE: (916) 752-6923; FAX: (916) 752-1031 : bjmccoy6ucdavis.edu 

ABSTRACT 

A mathematical theory is presented to describe membrane sieving based on the 
relative sizes of pores and solutes. A polydisperse liquid mixture with a continuous 
distribution of solute radii undergoes hindered transport through distributed mem- 
brane pores. The hydrodynamic theory for rigid spheres in cylindrical pores pro- 
vides expressions for the hindered diffusive and convective fluxes. Continuous 
and discrete (including fractal) distributions of pore sizes are considered. For 
a steady-state ultrafiltration process with a well-mixed upstream concentration 
distribution, the theory predicts how much the downstream concentration distribu- 
tion shifts toward smaller solutes as larger solutes are hindered or rejected by the 
membrane. Sieving coefficients, which are related to permeation rates that depend 
on relative pore and solute sizes, are presented for gamma distributions of solute 
radii and for continuous and discrete pore-radii distributions. 

Key Words. 
tion; Hindered diffusion; Polydisperse mixture 

Theory; Ultrafiltration; Fractal pore-size distribu- 

INTRODUCTION 

Membrane separations of liquid mixtures can occur by an ultrafiltration 
seiving process in which smaller solutes pass through the pores and larger 
solutes are retarded or totally rejected (1-3). Despite the practical impor- 
tance of such partially-retentive membranes (4). relatively little work has 
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488 McCOY 

been reported for solutes of many different sizes in distributed pores. In 
their discussion of dextran transport through ultrafiltration membranes, 
Mochizuki and Zydney (2) reviewed the experimental investigations of 
such polydisperse solutions. In the absence of surface forces that cause 
adsorption, the separation is due to steric effects in the membrane pores. 
Solutes of all sizes are hindered in their convective or diffusive passage 
through the membrane by interaction with the pore walls. These hydrody- 
namic interactions can be mathematically characterized for certain cases, 
including rigid spheres in cylindrical pores and in rectangular slits (5, 6). 

The current investigation proposes and evaluates a pore-transport 
model for ultrafiltration separations of a continuous liquid mixture whose 
distribution of solute sizes is a continuous function. Continuous-mixture 
theories have provided a useful route for understanding thermodynamics 
and chemical kinetics in multicomponent mixtures (7-1 l), but have not 
been applied extensively to problems of mass transfer and separation. The 
present objective is to show how a model can be developed for transport of 
continuous mixtures in distributed pores and to examine the consequences 
of the model. The distribution of the solute radii is taken to be a gamma 
distribution, a versatile function for describing continuous frequency dis- 
tributions (9, 10). 

The membrane consists of cylindrical pores, perpendicular to the mem- 
brane surface, whose sizes are represented by a pore-size distribution. The 
mixture has so many chemical species that it is described by a continuous 
function of solute radius, which itself is a continuous independent vari- 
able. The convection and diffusion of the solutes, assumed to be neutral 
rigid spheres, through the cylindrical pores are hindered by steric interac- 
tions with the pore walls, thus reducing the flux. Only solutes smaller 
than the pore diameter are allowed to be transported through the mem- 
brane. The effect of this pore cutoff diameter is enhanced by hindered 
transport to afford a basis for separation. The theory of hindered transport 
in liquid-filled pores has been developed for several geometries, including 
single spheres in a cylindrical pore ( 5 ) .  Using the approximation that each 
such sphere is positioned on the centerline, Bungay and Brenner (6) de- 
rived an expression for diffusive and convective flux for all solute diame- 
ters smaller than the pore diameter. The discussion here is restricted to 
membrane separations in the absence of external mass transfer limitations. 
Opong and Zydney (3) and Mochizuki and Zydney (2) explained how to 
account for such concentration polarization effects. Dharmappa et al. (12) 
discussed how solute polydispersivity affects membrane fouling. 

Both continuous and discrete pore-size distributions are treated in the 
present mathematical model of membrane sieving. Rectangular distribu- 
tions of pore radii illustrate how continuous functions enter into the model 
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MEMBRANE SIEVING 489 

formulation and influence the results. A discrete pore-size distribution is 
introduced by a fractal approach based on the concept of the Sierpinski 
carpet (13) and constructed by an iterative, deterministic procedure. The 
pore distribution allows for the number of pores and their size to be repre- 
sented by a fractional power, i.e., the fractal dimension. The fractal re- 
duces to the Sierpinski carpet membrane when appropriate values of three 
parameters are chosen. Such fractals were proposed by Adler (14) but 
not applied to diffusion of mixtures. Sernetz et al. (15) recognized the 
importance of the diffusion of a mixture of different-sized molecules in 
fractal porous media for chromatographic separations. 

The current paper is arranged so that flux through a single pore is dis- 
cussed in terms of the well-mixed upstream and downstream solute distri- 
butions, co(x) and cf(x). The summation of fluxes through all pores pro- 
vides expressions for the total permeation rate of solutes through the 
membrane. This allows the definition of a solute-dependent sieving coeffi- 
cient, s(x), that can be utilized to calculate the downstream distribution 
of solute sizes from the upstream distribution. The overall, or lumped, 
membrane sieving coefficient, S, can be found by integrations over x. 
Illustrative calculations are discussed for gamma distributions of solute 
radii and for continuous (rectangular and gamma) and discrete (fractal) 
pore-size distributions. With the given concepts and definitions, however, 
the approach can be applied using any functional forms for the distribu- 
tions. 

HINDERED TRANSPORT 

A porous membrane is fixed between two large-volume, well-stirred 
bulk liquid mixtures. The liquids consist of a solvent containing continu- 
ous polydisperse mixtures with the solute radius as the independent vari- 
able. For such mixtures the concentration of solutes with radii in the range 
(x, x + dx) is c(x)dx.  The total, or lumped, concentration is 

A discrete number of solute species of size xi  and concentration Ci can 
be represented in terms of Dirac delta functions by the summation over 
the species: 

c(x) = CCiS(X - x,) ( 2 )  

The steady-state solute flux, J ( x ,  ci) ,  of a single solute through a single 
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490 McCOY 

pore of radius r ,  is given by ( 1, 3 .  5 )  

J = K,z>c - KdDb dcldi (3) 
where c(x. r / ,  is the radially-averaged solute concentration distribution 
in the pore, 7 ' /  is the radially-averaged solution velocity, Db(x) is the bulk 
solution Brownian-motion diffusivity, and K ,  and K d  are the hindrance 
factors for convective and diffusive transport, respectively. For laminar 
flow in a cylindrical pore of radius r,, the velocity is given in terms of the 
bulk viscosity I* and the pressure difference A p  across the membrane of 
thickness L.  

ijl = (r,?l8p)AplL ( 4 )  
The hindrance factors, according to the Bungay and Brenner (6) theory, 
are expressed in terms of the partition coefficient (16. 17): 

( 5 )  @ = ( 1 - .Y/I;,)~, for .Y < r ;  

@ = 0 ,  for .r 2 r, 

which accounts for exclusion of the spherical solute from an annular region 
of the pore, or from the pore itself if the sphere is larger than the pore. 
For diffusion and convection. respectively, the factors are functions of .Y 

and r,. 

K d  = 6 d K ,  and K ,  = ( 2  - @)K, l2K ,  (6) 

where 

( K t ,  K , )  = (914)J2.rr2(l - .dr,)p5'1 [ l  + x f  (a,,, b,,)(l - .~Ir,)"l 

and the values for a,, and h,, are given in the Nomenclature Section. The 
hindrance factors apply to dilute suspensions of spheres. as solute-solute 
interactions are neglected. 

The boundary conditions for the differential Eq. (3) for c(x, r;, z )  in 
terms of the well-stirred bulk concentration distribution upstream, co(.r) ,  
and downstream. c,-.t-),  are 

(8) c ( s .  r l .  : = 0) = @co(.r) 

c(x. r , .  z = L )  = @<,,AX) 

and 

(9) 
where the partition coefficient, accounts for exclusion of the spherical 
solute from an annular region of the pore. and ensures that dx, r,, z )  is 
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MEMBRANE SIEVING 491 

zero if x 2 rj due to the complete exclusion of a sphere from the pore. 
Thus the partition coefficient, defined in Eq. (3, enforces the cutoff re- 
quirement for each pore and thus for the membrane as a whole. 

The solution to the differential Eq. (3) for the single pore is ( 1 ,  3) 

J ( x ,  rj) = @K,zyO(I - q, p c , ~ / c ~ ) / ( I  - e F p )  (10) 

where the Peclet number for the solute of radius x and pore of radius r, 
is defined as 

P ~ ( x )  = Kcl>LIKdDb ( 1  I )  
Since the expression for J contains the multiplicative factor a, the flux 
vanishes for x 2 r i .  

The solute flux for each pore is multiplied by its cross-sectional area 
to determine the permeation rate (moles/time) through the pore, i.e., IT 

r,’J(x, r j ) .  For discrete pore sizes, the permeation rate of solutes of radius 
x is the sum over all pore sizes, 

(12) 

where n; is the number of pores of radius r,. The total volumetric flow 
rate for dilute solutions is 

Q = X n y r r J ’ q  (13) 

The downstream, well-stirred distribution of solute, cf(x), is the solute 
permeation rate, N ( x ) ,  divided by the volumetric flow rate, Q :  

cf(x) = N(x) /Q  (14) 

Since cf(x) and c.&) are independent of the pore size, we can combine 
and rearrange algebraically Eqs. (10) and (12)-(14) to obtain 

s(x) = cf(x)/co(.u) = ~[q,F,]/&j[I + Fj exp(-P,)] ( I S )  

~ ( x )  = C t z , n r ;  J(X, r,) 

where 

q, = n p r ; n ;  (16) 

and 

F, = @K,/(1 - exp( - P,)) (17) 

In calculations of the ratio s(s), constant factors such as (1/8p)Ap/L in 
the expression for z!; and the normalization factor for the pore-size distri- 
bution will cancel. Within each summation the partition coefficient, a, 
serves to exclude solutes that are larger than a pore. This constitutes the 
pore cutoff property for each size pore. The sieving coefficient, s(x). will 
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492 McCOY 

in general have a maximum asymptotic value less than unity because 
solutes larger than r, are excluded from a pore of radius ci. If the largest 
pores are much larger than the solutes, then s(x)  will approach unity. 
Defective membranes with a few large pores thus accomplish poor sepa- 
ration. 

The calculation of s(s)  is closely related to the computation used by 
Mochizuki and Zydney ( 1 ) to calculate the sieving coefficient for a mono- 
disperse solution. With the explicit representation of s ( ~ )  in Eq. ( 1 3 ,  
however, an iterative solution method is unnecessary. The sieving coeffi- 
cient s(x) is independent of theform of the solute distributions, co(x) and 
cf(x). If a value of s(.r) is known, then the downstream distribution can 
obviously be determined as 

C f ( S )  = s(.r)co(s) (18) 

which shows the benefit of knowing s(.r). For a monodisperse pore-size 
distribution ( j  = I ) ,  the sieving coefficient reduces to 

s ( x )  = @K,e?/[eY - 1 + @Kc] (19) 

consistent with the condition that J = 7 I I c f  (a  special case of Eq. 14), 
which was discussed by Mochizuki and Zydney ( I ) .  

The overall sieving coefficient is defined as the ratio of the lumped 
downstream to the lumped upstream concentration, 

S = Cf/CO = IoX d.Y s (x )co ( . r~ / j -"L  d.u CO(.Y) (20) 

Because of the presence of @ in s(.r), S will manifest a membrane cutoff 
since solutes larger than the largest pore will be excluded. The membrane 
sieving coefficient S depends on the form of co(s), while s ( x )  does not. 
For monodisperse solute distributions, s = S. 

The function selected to represent the rrpstrecim continuous-mixture 
distribution of solute sizes is a gamma distribution, or Pearson Type 111 
function (18). expressed in terms of y = (.r - .ro)/p, 

co(.r) = (Co/pT(a))yu- I exp( -y), for .r 2 .ro 

and 
co(.r) = 0. f o r x  < .ro 

The zero moment with respect to .r is Co, the first moment is xavg = xu 
+ aP, and the variance is ap'. The maximum of cu(.r) is located at x = 
.yo + (a  - I )P.  Depending on the magnitude of a, the gamma distribution 
can represent a spectrum of shapes between exponential (a = I )  and 
gaussian (a * I ) .  If a = I ,  f3 = 1, and .yo = 0, Eq. (21) is the Poisson 
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MEMBRANE SIEVING 493 

distribution; if a = 1 and y 6 1, Eq. (21) is approximated by a rectangular 
distribution. To avoid the exclusion effect of solutes larger than the maxi- 
mum pore size r,, which would yield asymptotic values of S and s ( ~  > 
r,) less than unity, in the computations to follow we truncate the gamma 
distribution so that cO(x > Y,) = 0. 

Figure 1 shows the gamma distribution for ci = 2,  CO = 1 ,  and p = 5 
and 15. Increasing p when a is constant obviously broadens the distribu- 
tion. To plot results as dimensionless variables, a length scale is needed. 
According to the gamma distribution, Eq. (21), the continuous mixture 
has a minimum solute radius, xO. This parameter is a convenient basis for 
scaling x and r as xIx, and r / x o ,  although any length parameter would 
sufice. The Peclet number can be written as 

P,(x) = (rj/xO)’ (K,IKd)TO (22) 

where 

To = ApxG/SpDb (23) 

C 

x l x o  

FIG. 1 Gamma distributions, C O ( X ) ,  of upstream solute radii for s = 2, CO = I ,  p = 5 and 
15 (solid line). Downstream of the membrane with TO = 0.001 and a fractal pore distribution 
( h  = 2, s = 1.5, 0 = T, a = 10x0). the distribution cdx) (dotted line) demonstrates that 
solutes larger than X,/XO = 6.67 are prevented from passing through pores and transport 

of smaller solutes is hindered. 
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494 McCOY 

is a dimensionless parameter that depends on the transmembrane pressure 
and therefore can be controlled experimentally ( 2 ) .  

The distributions for cdx), plotted for a discrete fractal pore-size distri- 
bution at To = 0.001 in Fig. 1 ,  demonstrate the separation of larger solutes 
by pore cutoff and hindered transport. The downstream distribution, c,-(x), 
is a gamma function only in special cases, e.g. ,  when s(x) is constant 
with x. 

CONTINUOUS PORE-SIZE DISTRIBUTIONS 

If the pore sizes are distributed continuously, then the summations in 
the above equations are replaced by integrals over a pore-size distribution, 
n(r) .  where the number of pores in the size range ( r ,  r + d r )  is n ( r )  dr. 
Then instead of the summation in Eq. (12), the permeation rate of solutes 
of radius .Y is the integral over n ( r ) ,  

and likewise for Q in Eq. (13) .  The algebraic manipulations needed to 
write the sieving coefficient are the same as for the discrete case; one 
obtains 

where, for example. 

4 ( r )  = / l ( i ) r i i l  (26) 

and we have simply dropped the subscript j on the continuous variables 
r ,  4,  7 1 ,  P. and F.  The ratio that defines ds) ensures that the normalization 
constant of the pore-size distribution has no influence on s(.Y). The expres- 
sion for the membrane sieving coefficient for continuous pore-size distri- 
butions is the same as discrete distributions, Eq. (20). 

Calculations for rectangular distributions of pores provide a straightfor- 
ward route to realistic results. The rectangular distribution of pore sizes 
is given respectively by I I ( ~ )  = tio for so 5 r 5 xm and zero for other 
values of r .  The maximum value of r is taken to be the largest solute size 
(rm = xm) to avoid the effect of totally excluded solutes. The minimum 
value of r is chosen to ignore pores smaller than the smallest solute size, 
i.e., ro = -yo. 
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MEMBRANE SIEVING 495 

Calculations were also done with a gamma distribution of pore radii, 
for which the continuous variable r replaced x in Eq. (21). Lognormal 0.r 
truncated Gaussian distributions, such as those used by Mochizuki and 
Zydney ( l ) ,  could also be employed for n ( x ) .  

FRACTAL PORE-SIZE DISTRIBUTIONS 

Discrete pore-size distributions can be represented by a fractal power 
relation. A model of a porous membrane with a deterministic fractal distri- 
bution of pores is developed by a conceptual process of making parallel 
holes in a slab. A similar construction (14) was used for flow in a porous 
medium. Adler (14) suggested that such fractals could be applied to diffu- 
sion and conduction (thermal or electrical) but did not introduce mixtures 
of different sized molecules. The benefit of the fractal approach is that 
simple mathematical formulas describe the fractal properties. Adler’s ex- 
position (19) elaborates on the fractal representation of porous systems. 

We first consider a membrane based on the fractal known as the Sierpin- 
ski carpet (13), and then generalize the concept to consider holes of differ- 
ent numbers, shapes, and sizes. Figure 2 shows the s tepsj  = 1, 2, 3 in 
the construction of the membrane from a unit square of area u2 .  At Step 
1 a square hole of edge a13 is formed perpendicular to the membrane. In 
each of the remaining 8 squares a hole of size (~13’)’ is formed. This 
process is repeated indefinitely for every square. The edge length of a 
square at Step j is vj = u13j and its cross section has area ~ 1 ~ 1 9 ~ .  The 
number and volume, respectively, of pores formed at thejth step are 

ni = 8 J - ’  and V, = L(8/9)Ja’/8 (27) 

Although not a fractal, the cumulative pore-volume distribution up 
to the j th step can be shown to be La2[1 - (8/9)j], which becomes La2 if 
j + m, meaning that all mass is eventually removed by making square 
holes in the membrane. The discrete pore-volume distribution has the 
fractal property (13) that it can be represented by a noninteger power, or 
fractal dimension, D ,  

Vj = ADr;-D (28) 

where 

D = In 81ln 3 and A = dL/8)lin (29) 

The pore cross-section-area distribution is 

VjIL = AID$ (30) 

where D = In 81ln 3 as before and A ’  = a(1/8)’/”. The distribution can 
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I :i: 0 - - 1  

FIG. 2 Steps in the construction of fractal membranes: ( A )  Sierpinski membrane, i .e . ,  R 
= l , u = 3 , / 1 = 8 , j =  1 - 3 : ( B ) R = ~ . u = ! . h = 6 . j =  1 - 3 : ( C ) f l = n . u =  1 . S . h  

= 2. j = 1-5. 
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MEMBRANE SIEVING 497 

be made dimensionless: 

VJ/La2 = A * D( rJ/a)2 - (31) 
where D is unchanged and A *  = 8 - ” D  

The fractal pore distribution can be generalized by considering pores 
of cross-sectional area Rr:, where R = I for squares, T for circles, or 
other constants for other cross-section shapes. For membrane transport 
through parallel pores the placement of the pores is immaterial if the cross 
sections do not overlap and the upstream and downstream liquids are 
well-stirred. Even though the pores are positioned randomly over the 
membrane, the underlying fractal order of pore size applies. This melding 
of randomness and organization is a common property of porous systems 
(19). The relative size (e.g., radius) of the pores formed at two subsequent 
steps is defined as the constant u: 

u = (size of pore formed at Stepj)/(size of pore formed at S t ep j  + 1) 

(32) 
The relative number of pores formed at subsequent steps is also a con- 
s tan t : 

h = (number of pores formed at S t ep j  + I ) /  

(number of pores formed at Stepj) (33) 

A similar generalization of the Sierpinski carpet was suggested by Pfeifer 
and Obert (20). The unit square of area a’ can be replicated side-by-side 
to form the total membrane surface area. The size of pores removed at 
S t ep j  is r, = a h J ,  and the volume of a pore is LR(a/aJ)’. The volume 
removed at the j t h  step is L(Ra’I1z) / (h /~*)~,  and the cumulative volume 
removed is [LRu2/(u2 - 12)][1 - (/z/u’)~]. All the membrane mass is re- 
moved if the cumulative volume of pores at thejth step is La’. Such a 
structure possesses fractal properties in a finite range of pore sizes. The 
fractal dimension D and the premultiplier A * in the dimensionless equation 

(34) VJ/La’ = A *”( rJ/u)’ - 

can be shown to be 

D = In hlln u and A *  = ( R / / I ) ” ~  (35) 
The fractal dimension D depends on u and h but not on the shape factor R; 
the premultiplier A* depends on h and R but not on u. For the Sierpinski 
membrane (fractal over the entire range of pore sizes), fl = 1 ,  u = 3 ,  
and h = 8,  and the expressions reduce appropriately. If h = u2, then the 
distribution is rectangular and discrete. 
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Examples of fractal constructions are pictured in Fig. 2 .  The Sierpinski 
carpet ( A )  shows the first three steps in  making the square holes of size 
ratio IJ = 3 and number ratio / I  = 8 .  A membrane with circular cross- 
section pores is shown (B)  with (T = 3 and / I  = 6. The random positioning 
of the pores in the membrane (C)  with CT = 1.5 and / I  = 2 does not affect 
the separation process. 

Figure 3 hhows the pore volume distribution versus I ' / ~ I  for various val- 
ues of the parameters. The fractal membranes display pol-e-volume distri- 
butions that may either increase or decrease with pore size. One may 
utilize such power-law distributions as continuous distributions. For the 
discrete distribution. values of 1', are spaced evenly on the logarithmic 
axis by the amount log(a). The line for the square-pore Sierpinski mem- 
brane would be parallel to the cylindrical-pore case for u = 3 and h = 8 
(not plotted). For a given value of (r. lines for different / I  intersect at I' = 
lla. 

CI 

E 
a - 
0 > 

E 
n 
0 
Y 

log (pore size) 

FIG. 3 Log-log plot of the pore-volume distribution: reduced volume.  \',/L<I:. versus hole 
sire. r , / o .  for fractal membranes u i t h  c>lindrical hole\ (0 TT). u = 1.5 (dashed line) and 
cr = 3 (solid line). and several valuer of I t .  1 he dotted line is the Sierpin5ki membrane  (0 

= I .  rJ 3 .  / I  = X ) .  
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MEMBRANE SIEVING 499 

RESULTS AND DISCUSSION 

It is instructive to view how the sieving coefficients s(x) and S depend 
on the membrane and mixture parameters. In Fig. 4 are shown the solute 
sieving coefficients, s(s), for several values of the transmembrane-pres- 
sure parameter, TO, calculated by Eq. (25). This membrane has a rectangu- 
lar pore-size distribution with rolxo = I and rm/xo = .vm/xO = 10. The 
coefficient s(x) is independent of the distributiori of solute sizes. Calcula- 
tions (not shown) for a gamma distribution of pore radii demonstrated 
behavior similar to Fig. 4. Solutes larger than x/xo = 10 are totally rejected 
(s = 0), while small solutes are readily transported by diffusion through 
the membrane if To is small. 

Figure 5 shows the same data as Fig. 4 but plotted as s(x)  versus ;rb. 
If the Peclet number is large (e.g., To is large). the sieving coefficient has 
its asymptotic value, s,(.Y) = OK,. In the other limit, P < I (e.g., To is 
small) and the solute transport is primarily diffusive, so that s == I .  The 
two limits are displayed in Fig. 5 ,  where s(x) is plotted for solutes of size 
x/x0 = 1 ,  2 ,  4, 6, 8,  and 10. Smaller solutes have higher values of s(x )  
since they are more readily transported through the pores. The sieving 

x l x o  

FIG. 4 The solute sieving coefficient, s(x). for a gamma distribution of solutes and a rectan- 
gular distribution of pores (x,/.\-~ 7 rm/so = 10) for values of To from 10 to 0. I ,  
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coefficient s(x )  shows the same features as Fig. S of Mochizuki and Zyd- 
ney ( I ) ,  which also applies to distributed pores and solutes of distinct size. 

The membrane sieving coefficient, S ,  calculated by Eq. (20), behaves 
in a similar manner if we plot S versus To for given pore and solute distribu- 
tions (Fig. 6) .  The computational results are for a gamma distribution of 
solutes and the rectangular distribution of pores used in Figs. 4 and 5 .  As 
the solute distribution broadens, i.e., (3 increases, the large TO asymptote 
decreases due to hindered transport of the larger solutes in the broadened 
distribution. For small To the membrane sieving coefficient S approaches 
unity since the maximum size of solutes equals the maximum size of pores 
(rm/.rO = xm/.xO = 10). In this limit S would be less than unity if rm < xm. 
i.e., the feed solution has solutes larger than the membrane cutoff. Thus, 
as commonly defined, the memhrane cutoff excludes solutes larger than 
the largest pore. 

The results for discrete pore distributions demonstrate behavior similar 
to that of the continuous distributions. The solute sieving coefficient s(x) 
is calculated by Eq. ( I S )  and plotted for several values of To in Fig. 7 for 
a fractal distribution of pores with s = 1.5. h = 2, d.ro = 10 (values of 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 
1 

\ 
1 \ \ 4 

t x / x 0 = 1 0  \u 
- 1  

FIG. 5 The solute sieving coefficient. .s(.r). versus the parameter for transmembrane pres- 
sure. To (same conditions as Fig. 4) .  As solute size increases. the diffusive asymptote de- 

creases. 
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S 

- 1  

t o  

FIG. 6 The membrane sieving coefficient. S .  for a gamma distribution of solutes and a 
rectangular distribution of pore sizes. As the solute distribution broadens (0 increases). the 

diffusive asymptote decreases. 

rj and V, are given in Table I ) .  This plot shows that as 7;) decreases, 
diffusive transport allows solute concentrations to be more nearly equal 
on the two sides of the membrane, and s(x) approaches unity for a larger 
range of pore sizes. Figure 8 is the same as Fig. 7 but with h = 40. As 
the relatively larger numbers of small pores restricts the permeation of 
larger solutes, all curves for given values of To are shifted leftward to 
smaller values of x/xo. 

The relationship between cob)  and c&) is shown in Fig. 1 for the fractal 
distribution of pores ( h  = 2 )  and for two values of p (width of solute 
distribution). The sieving action of the membrane serves to reduce the 
size of the filtrate solutes, i.e., c'f 5 co for all x. 

The effect on the membrane sieving coefficient of changing h is demon- 
strated in Fig. 9, where S calculated by Eq. (20) is plotted versus To. 
Computed values are displayed for h = 2, 5, 10,40, and 100. As the pore- 
size distribution shifts to smaller sizes (i.e., as lz increases), S decreases. 
The effect on the diffusive asymptote (large To value of S )  is especially 
strong . 
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1 .o 

0.8 

0.6 

s ( x )  
0.4 

0.2 

\ \  \ - 4  \ \ \  

1 0.0 
1 2 3 4 5 6 7 

X I X O  

FIG. 7 
7) and a fractal distribution of pore5 ( / I  

The solute sieving coefficient. d x ) .  for a gamma distribution of solutes (.i,,,/.ro = 
2. u = 1.5. 0 = IT. d r o  = 10) for values of TO 

from 10 ~' to 0.1. 

The results clearly demonstrate that sieving coefficients are influenced 
by both the pore-size and solute-size distributions. Not only cutoff proper- 
ties, but also hindered transport enters into the analysis of ultrafiltration 
separations. Using an average pore size for computations and data analy- 
sis will not in general suffice to reveal the true behavior of a polydisperse- 
mixture membrane separation process. 

TABLE I 
Pore Size and Pore Volume for Six Steps in the Construction of a 

Fractal Distribution of Pores Iu = 1.5. 11 = 7 ~ .  (I = 10.~0) 

I 0.6667 I .  IS8 1.356 1.977 
2 0.444 1.029 1.808 4.393 
3 0.2963 0.915 2.41 I 9.761 
1 0.1975 0.813 3 .715  7 I .6Y 
5 0.1317 0.723 4.286 48.11 
6 0.0978 0.622 5.715 107. I 
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1 2 3 4 6 7 

X I X O  

FIG. 8 The solute sieving coefficient for conditions of Fig. 6 except that !I = 40. 

To 

FIG. 9 The membrane sieving coefficient, S. versus TO for a fractal membrane with u = 
1.5 and 0 = TI. The pore distribution shifts to smaller sues  as h increases. 
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CONCLUDING REMARKS 

Combining distributed pore and solute sizes in membrane separation 
theory deepens the understanding of ultrafiltration processes. The interac- 
tion of pores and solutes of different sizes gives rise to behavior not readily 
interpreted by simpler models. The present work provides a framework 
for developing more detailed theories that may be useful in designing 
membrane processes and explaining experimental observations. 

The present approach to membrane sieving differs from other models 
by explicitly accounting for the distribution of solute sizes as well as of 
pore sizes. The continuous-mixture concept of polydispersivity allows a 
hydrodynamic analysis of hindered pore transport that leads to the compu- 
tation of sieving coefficients. The sieving coefficient for individual solutes, 
s(s) ,  is useful for calculating the downstream (filtrate) solute-size distribu- 
tion, cf(,v). given the upstream distribution, cO(.v). An integration computa- 
tion allows the membrane sieving coefficient. S, to be calculated from 
s ( s )  and c&v) .  The theory reduces appropriately to simpler models; for 
example. discrete solute mixtures in distributed pores and monodisperse 
solutes in monodisperse pores. The distribution functions, gamma distri- 
butions for solutes, and continuous rectangular and discrete fractal distri- 
butions for pores are easily replaced in the model with other functions. 
Characterization of the mixtures by gel permeation chromatography and 
direct measurement of the membrane pore-size distribution by electron 
microscopy can furnish the essential information needed to implement the 
theory and test i t  against experimental observations. 

The current model is limited by several approximations and assump- 
tions. The membrane concentration polarization and fouling are neglected, 
even though the polydisperse solute distribution affects this phenomena 
(12). We consider the diffusion coefficient to be invariant with solute size, 
a satisfactory approximation for narrow distributions. All  pores are per- 
pendicular to the membrane and therefore of the same length. The calcula- 
tions for hindered transport apply to very dilute solutions of rigid spherical 
solutes in cylindrical pores with none but steric pore-wall interactions 
(e.g., no adsorption or electrostatic activity). In  all except the most dilute 
mixtures. however, solutes in pores will obstruct the  permeation of other 
solutes (31). While some of these approximations can be mitigated, relaxa- 
tion of the assumptions inherent in the hydrodynamic theory of hindered 
pore transport must await advances in this fundamental issue of fluid dy- 
namics. Some of the basic ideas outlined in the current approach, how- 
ever, will possibly be unchanged. 
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NOMENCLATURE 

a,, , b,, coefficients in expressions for hindered transport quantities K ,  and 
K ,  ( n  = 1-7): 

= -73160 
a2 = 77,293/50,400 
a3 = -22.5083 
a4 = -5.6117 
U S ,  = -0.3363 
a6 = -1.216 
~7 = 1.647 
bl = 7/60 
bz = -2227150,400 
b3 = 4.018 
64 = -3.9788 
bs = -1.9215 
bg = 4.392 
b7 = 5.006 

n 
A ,  A ' ,  A* 

length scale for a membrane of unit surface area a2 
coefficients in fractal expressions for membrane pore 
volume Vj 
distribution of solutes of radii x 
upstream distribution of solutes of radii x 
downstream (filtrate) distribution of solutes of radii 

lumped concentration; integral of c(x)  over all x 
concentration of upstream solutes 
concentration of downstream solutes 
fractal dimension for membrane pore volume Vj 
bulk-solution diffusivity 
flux of solute of radius x through pore of radius r 
hindrance factors for solute transport in a pore 
thickness of membrane 
distribution of pores of radius r 
number of pores of radius r, 
permeation rate of solute of radius x 
Peclet number for transport in a pore of radius rj 
transmembrane pressure difference 
total volumetric flow rate through membrane 
radius of a pore for continuous pore-size distributions 

X 
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s(s)  

To 

1 .  

7 -. 

3. 

4. 

5 .  

6 .  

7 .  

8. 

9. 

10. 

II. 

discrete values of pore radius Cj = I .  2 ,  3 ,  . . .) 
minimum pore radius in a membrane 
maximum pore radius in a membrane 
membrane sieving coefficient in terms of lumped con- 
centrations 
membrane sieving coefficient for solute of radius .K 
dimensionless parameter, e.g., for transmembrane 
pressure 
cross-section average velocity in  a pore of radius rj 
volume of pores of size r, 
solute radius 
minimum solute radius in a distribution 
maximum solute radius in a distribution 
length coordinate along the pore 
parameter in the gamma distribution 
parameter in the gamma distribution 
partition function 
viscosity of solvent 
parameter in fractal distribution of pore sizes 
gamma function [ = (a - I ) !  if a is an integer] 
shape factor for pores 
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